The Dark Side of MongoDB: What They Don't Tell You
Thinking about using MongoDB? Learn about the real-world challenges, performance issues, and hidden costs that developers face when using MongoDB in production.
MongoDB is often praised as the go-to NoSQL database, but after years of production experience, here are the critical issues developers should know before choosing it.
The Marketing vs Reality
What They Promise
// Simple and flexible schema
const user = {
name: "John",
preferences: { /* anything goes! */ }
};
db.users.insert(user);
What You Get
// Schema chaos in production
const user1 = {
name: "John",
preferences: { theme: "dark" }
};
const user2 = {
name: "Jane",
preferences: "dark" // Oops, string instead of object
};
const user3 = {
name: "Bob",
prefs: { theme: "light" } // Different field name
};
Real Production Problems
1. Memory Usage
MongoDB's Working Set Must Fit in RAM:
- 100GB dataset
- Needs ~120GB RAM for good performance
- Otherwise, dramatic slowdown
2. Unexpected Query Behavior
// Looks simple, right?
db.users.find({ "preferences.theme": "dark" });
// But fails to find records where:
// - preferences is null
// - preferences is a string
// - field is named differently
// - nested object has different structure
3. Index Limitations
// Each index needs RAM
// Common production scenario:
{
users: 10 million documents
indexes: 5 compound indexes
size: ~2GB per index
total: 10GB just for indexes
}
The Cost of Flexibility
1. Data Integrity Issues
// No schema enforcement means:
const payments = [
{ amount: 100.00 },
{ amount: "100.00" }, // String instead of number
{ ammount: 100.00 }, // Typo in field name
{ amount: null } // Missing value
];
2. Query Performance
// What seems simple...
db.orders.find({
status: "pending",
created_at: { $gt: lastWeek }
}).sort({ amount: -1 });
// Can cause full collection scan if:
// - Wrong index
// - Too many documents
// - Working set exceeds RAM
Better Practices
1. Schema Validation
// Use schema validation
db.createCollection("users", {
validator: {
$jsonSchema: {
required: ["name", "email"],
properties: {
name: { type: "string" },
email: { type: "string" },
preferences: {
type: "object",
required: ["theme"],
properties: {
theme: { enum: ["light", "dark"] }
}
}
}
}
}
});
2. Proper Indexing Strategy
// Instead of many indexes
db.users.createIndex({ field1: 1 });
db.users.createIndex({ field2: 1 });
db.users.createIndex({ field3: 1 });
// Create compound indexes based on queries
db.users.createIndex({
field1: 1,
field2: 1,
field3: 1
});
When to Use PostgreSQL Instead
1. Complex Data Relationships
-- PostgreSQL handles relations better
SELECT users.*, orders.total
FROM users
JOIN orders ON users.id = orders.user_id
WHERE orders.status = 'completed';
2. Data Integrity Needs
-- PostgreSQL enforces types and constraints
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
preferences JSONB DEFAULT '{"theme": "light"}'::jsonb
);
Real World Performance Comparison
Query Performance
Complex Query with Joins:
- PostgreSQL: 100ms
- MongoDB: 300ms (with multiple queries)
Aggregate Operations:
- PostgreSQL: Built-in functions
- MongoDB: Complex MapReduce or Aggregate
Memory Usage
100GB Dataset:
PostgreSQL:
- Works well with 32GB RAM
- Smart buffer management
MongoDB:
- Needs ~120GB RAM
- Significant slowdown if not in RAM
When MongoDB Makes Sense
- Document-Centric Applications
- Rapid Prototyping
- Simple CRUD Operations
- No Complex Transactions
- Sufficient RAM Available
Conclusion
MongoDB isn't bad—it's just frequently misused. Consider your use case carefully:
- Need ACID transactions? → PostgreSQL
- Complex relations? → PostgreSQL
- Simple document store? → MongoDB
- Limited RAM? → PostgreSQL
Remember: The best database is the one that matches your actual needs, not the trending choice.