The Dark Side of MongoDB: What They Don't Tell You
Thinking about using MongoDB? Learn about the real-world challenges, performance issues, and hidden costs that developers face when using MongoDB in production.
MongoDB is often praised as the go-to NoSQL database, but after years of production experience, here are the critical issues developers should know before choosing it.
The Marketing vs Reality
What They Promise
// Simple and flexible schema
const user = {
  name: "John",
  preferences: { /* anything goes! */ }
};
db.users.insert(user);
What You Get
// Schema chaos in production
const user1 = {
  name: "John",
  preferences: { theme: "dark" }
};
const user2 = {
  name: "Jane",
  preferences: "dark" // Oops, string instead of object
};
const user3 = {
  name: "Bob",
  prefs: { theme: "light" } // Different field name
};
Real Production Problems
1. Memory Usage
MongoDB's Working Set Must Fit in RAM:
- 100GB dataset
- Needs ~120GB RAM for good performance
- Otherwise, dramatic slowdown
2. Unexpected Query Behavior
// Looks simple, right?
db.users.find({ "preferences.theme": "dark" });
// But fails to find records where:
// - preferences is null
// - preferences is a string
// - field is named differently
// - nested object has different structure
3. Index Limitations
// Each index needs RAM
// Common production scenario:
{
  users: 10 million documents
  indexes: 5 compound indexes
  size: ~2GB per index
  total: 10GB just for indexes
}
The Cost of Flexibility
1. Data Integrity Issues
// No schema enforcement means:
const payments = [
  { amount: 100.00 },
  { amount: "100.00" }, // String instead of number
  { ammount: 100.00 },  // Typo in field name
  { amount: null }      // Missing value
];
2. Query Performance
// What seems simple...
db.orders.find({
  status: "pending",
  created_at: { $gt: lastWeek }
}).sort({ amount: -1 });
// Can cause full collection scan if:
// - Wrong index
// - Too many documents
// - Working set exceeds RAM
Better Practices
1. Schema Validation
// Use schema validation
db.createCollection("users", {
  validator: {
    $jsonSchema: {
      required: ["name", "email"],
      properties: {
        name: { type: "string" },
        email: { type: "string" },
        preferences: { 
          type: "object",
          required: ["theme"],
          properties: {
            theme: { enum: ["light", "dark"] }
          }
        }
      }
    }
  }
});
2. Proper Indexing Strategy
// Instead of many indexes
db.users.createIndex({ field1: 1 });
db.users.createIndex({ field2: 1 });
db.users.createIndex({ field3: 1 });
// Create compound indexes based on queries
db.users.createIndex({ 
  field1: 1, 
  field2: 1, 
  field3: 1 
});
When to Use PostgreSQL Instead
1. Complex Data Relationships
-- PostgreSQL handles relations better
SELECT users.*, orders.total 
FROM users 
JOIN orders ON users.id = orders.user_id 
WHERE orders.status = 'completed';
2. Data Integrity Needs
-- PostgreSQL enforces types and constraints
CREATE TABLE users (
  id SERIAL PRIMARY KEY,
  email VARCHAR(255) UNIQUE NOT NULL,
  preferences JSONB DEFAULT '{"theme": "light"}'::jsonb
);
Real World Performance Comparison
Query Performance
Complex Query with Joins:
- PostgreSQL: 100ms
- MongoDB: 300ms (with multiple queries)
Aggregate Operations:
- PostgreSQL: Built-in functions
- MongoDB: Complex MapReduce or Aggregate
Memory Usage
100GB Dataset:
PostgreSQL:
- Works well with 32GB RAM
- Smart buffer management
MongoDB:
- Needs ~120GB RAM
- Significant slowdown if not in RAM
When MongoDB Makes Sense
- Document-Centric Applications
 - Rapid Prototyping
 - Simple CRUD Operations
 - No Complex Transactions
 - Sufficient RAM Available
 
Conclusion
MongoDB isn't bad—it's just frequently misused. Consider your use case carefully:
- Need ACID transactions? → PostgreSQL
 - Complex relations? → PostgreSQL
 - Simple document store? → MongoDB
 - Limited RAM? → PostgreSQL
 
Remember: The best database is the one that matches your actual needs, not the trending choice.